182 research outputs found

    Discussion to: ‘Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses’ by T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli and N. Casagli

    Get PDF
    The paper ‘Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses’ by T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli and N. Casagli deals with a sensitive topic for landslide risk management. Exploring the pre-failure behaviour of four different case histories, the authors proposed standard procedures for the application of the inverse velocity method (INV, Fukuzono 1985). Specifically, they suggested guidelines for the filtering of velocity data and an original and simple approach to automatically set the first and the second alarm thresholds using the inverse velocity method. The present discussion addresses three different topics: (1) data filter selection according to the features of monitoring instrument; (2) the importance of data sampling frequency for the forecasting analysis and (3) the influence of the starting point (SP in this discussion) for the application of INV analysis. Moreover, based on this matter, a new method is proposed to update the INV analysis on an ongoing basis

    Digital image correlation (DIC) analysis of the 3 December 2013 Montescaglioso landslide (Basilicata, Southern Italy). Results from a multi-dataset investigation

    Get PDF
    Image correlation remote sensing monitoring techniques are becoming key tools for providing effective qualitative and quantitative information suitable for natural hazard assessments, specifically for landslide investigation and monitoring. In recent years, these techniques have been successfully integrated and shown to be complementary and competitive with more standard remote sensing techniques, such as satellite or terrestrial Synthetic Aperture Radar interferometry. The objective of this article is to apply the proposed in-depth calibration and validation analysis, referred to as the Digital Image Correlation technique, to measure landslide displacement. The availability of a multi-dataset for the 3 December 2013 Montescaglioso landslide, characterized by different types of imagery, such as LANDSAT 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor), high-resolution airborne optical orthophotos, Digital Terrain Models and COSMO-SkyMed Synthetic Aperture Radar, allows for the retrieval of the actual landslide displacement field at values ranging from a few meters (2–3 m in the north-eastern sector of the landslide) to 20–21 m (local peaks on the central body of the landslide). Furthermore, comprehensive sensitivity analyses and statistics-based processing approaches are used to identify the role of the background noise that affects the whole dataset. This noise has a directly proportional relationship to the different geometric and temporal resolutions of the processed imagery. Moreover, the accuracy of the environmental-instrumental background noise evaluation allowed the actual displacement measurements to be correctly calibrated and validated, thereby leading to a better definition of the threshold values of the maximum Digital Image Correlation sub-pixel accuracy and reliability (ranging from 1/10 to 8/10 pixel) for each processed dataset

    Inferring the high velocity of landslides in Valles Marineris on Mars from morphological analysis

    Get PDF
    The flow characteristics and velocities of three landslides in Valles Marineris on Mars are investigated using detailed morphological analyses of high-resolution images and dynamical calculations based on the run-up and curvature of the landslide deposits. The morphologies of the landslides are described, especially concerning those characteristics that can provide information on the dynamics and velocity. The long runout and estimated high velocities, often exceeding 100 m/s, confirm a low basal friction experienced by these landslides. Because subaqueous landslides on Earth exhibit reduced friction, we explore the scenario of sub-lacustrine failures, but find little support to this hypothesis. The environmental conditions that better explain the low friction and the presence of longitudinal furrows suggest an aerial environment with a basal soft and naturally lubricating medium on which friction diminished gradually; in this perspective, ice is the most promising candidate

    Imaging multi-age construction settlement behaviour by advanced SAR interferometry

    Get PDF
    This paper focuses on the application of Advanced Satellite Synthetic Aperture Radar Interferometry (A-DInSAR) to subsidence-related issues, with particular reference to ground settlements due to external loads. Beyond the stratigraphic setting and the geotechnical properties of the subsoil, other relevant boundary conditions strongly influence the reliability of remotely sensed data for quantitative analyses and risk mitigation purposes. Because most of the Persistent Scatterer Interferometry (PSI) measurement points (Persistent Scatterers, PSs) lie on structures and infrastructures, the foundation type and the age of a construction are key factors for a proper interpretation of the time series of ground displacements. To exemplify a methodological approach to evaluate these issues, this paper refers to an analysis carried out in the coastal/deltaic plain west of Rome (Rome and Fiumicino municipalities) affected by subsidence and related damages to structures. This region is characterized by a complex geological setting (alternation of recent deposits with low and high compressibilities) and has been subjected to different urbanisation phases starting in the late 1800s, with a strong acceleration in the last few decades. The results of A-DInSAR analyses conducted from 1992 to 2015 have been interpreted in light of high-resolution geological/geotechnical models, the age of the construction, and the types of foundations of the buildings on which the PSs are located. Collection, interpretation, and processing of geo-thematic data were fundamental to obtain high-resolution models; change detection analyses of the land cover allowed us to classify structures/infrastructures in terms of the construction period. Additional information was collected to define the types of foundations, i.e., shallow versus deep foundations. As a result, we found that only by filtering and partitioning the A-DInSAR datasets on the basis of the above-mentioned boundary conditions can the related time series be considered a proxy of the consolidation process governing the subsidence related to external loads as confirmed by a comparison with results from a physically based back analysis based on Terzaghi's theory. Therefore, if properly managed, the A-DInSAR data represents a powerful tool for capturing the evolutionary stage of the process for a single building and has potential for forecasting the behaviour of the terrain-foundation-structure combination

    Supporting Tunnelling Excavation of an Unstable Slope by Long Term Displacement Monitoring

    Get PDF
    A complex multi-sensor monitoring platform for the continuous control of an unstable slope affected by tunneling excavation, was realized between 2007 and 2008 after the first collapse of an already built tunnel entrance. The monitoring system was made of some inclinometric and piezometric sensors up to 70 m deep, a topographic system, a Terrestrial SAR Interferometer, a weather station, a photocamera and some load cells installed on bulkheads anchors. The continuous monitoring of the slope during different working phases (planning of stabilization works, realization of stabilizations works and tunneling excavation) allowed us to continuously control the slope behaviour, thus guaranteeing the operations in safety conditions. Data derived from the displacement monitoring, combined with geological and geomechanical information, allowed us to better define the complex engineering geological model of the slope, thus supporting the design of stabilization works. Furthermore, the real time control by TInSAR allowed us to stop the excavations of the tunnel for three times following the sudden increase of the slope displacement velocity. Stability thresholds of velocity and displacement have been also defined using semi-empirical models on the basis of the collected historical displacement data

    Basin scale assessment of landslides geomorphological setting by advanced InSAR analysis

    Get PDF
    An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010) have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar) techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space

    Seismic response of the geologically complex alluvial valley at the "Europarco Business Park" (Rome - Italy) through instrumental records and numerical modelling

    Get PDF
    The analysis of the local seismic response in the “Europarco Business Park”, a recently urbanized district of Rome (Italy) developed over the alluvial valley of the “Fosso di Vallerano” stream, is here presented. A high-resolution geological model, reconstructed over 250 borehole log-stratigraphies, shows a complex and heterogeneous setting of both the local Plio- Pleistocene substratum and the Holocene alluvia. The local seismo-stratigraphy is derived by a calibration process performed through 1D numerical modelling, accounting for: i) 55 noise measurements, ii) 10 weak motion records obtained through a temporary velocimetric array during the August 2009 L’Aquila- Gran Sasso seismic sequence and iii) one cross-hole test available from technical report. Based on the reconstructed seismo- stratigraphy, the local seismic bedrock is placed at the top of a gravel layer that is part of the Pleistocene deposits and it does not correspond to the local geological bedrock represented by Plio-Pleistocene marine deposits. 1D amplification functions were derived via numerical modelling along three representative sections that show how in the Fosso di Vallerano area two valleys converge into a single one moving from SE toward NW. The obtained results reveal a main resonance at low frequency (about 0.8 Hz) and several higher resonance modes, related to the local geological setting. Nonlinear effects are also modelled by using strong motion inputs from the official regional dataset and pointed out a general down-shift (up to 0.5 Hz) of the principal modes of resonance as well as an amplitude reduction of the amplification function at frequencies higher than 7 Hz

    Comparison of approaches for data analysis of multi-parametric monitoring systems. Insights from the Acuto test-site (Central Italy)

    Get PDF
    This paper deals with monitoring systems to manage the risk due to fast slope failures that involve rock masses, in which important elements (such as infrastructures or cultural heritages, among the others) are exposed. Three different approaches for data analysis were here compared to evaluate their suitability for detecting mutual relations among destabilising factors, acting on different time windows, and induced strain effects on rock masses: (i) an observation-based approach (OBA), (ii) a statistics-based approach (SBA) and (iii) a semi-empirical approach (SEA). For these purposes, a test-site has been realised in an abandoned quarry in Central Italy by installing a multi-parametric monitoring sensor network on a rock wall able to record strain effects induced by natural and anthropic forcing actions (like as temperature, rainfall, wind and anthropic vibrations). The comparison points out that the considered approaches allow one to identify forcing actions, responsible for the strain effects on the rock mass over several time windows, regarding a specific size (i.e., rock block dimensional scale). The OBA was more suitable for computing the relations over short- to medium time windows, as well as the role of impulsive actions (i.e., hourly to seasonal and/or instantaneous). The SBA was suitable for computing the relations over medium- to long time windows (i.e., daily to seasonal), also returning the time lag between forcing actions and induced strains using the cross-correlation statistical function. Last, the SEA was highly suitable for detecting irreversible strain effects over long- to very long-time windows (i.e., plurennial)

    Coherency and phase delay analyses between land cover and climate across Italy via the least-squares wavelet software

    Get PDF
    Land cover and climate monitoring is a crucial task in agriculture, forestry, hazard management, and ecosystems assessment. In this paper, normalized difference vegetation index (NDVI), land surface temperature (LST), and land cover products by the moderate resolution imaging spectroradiometer (MODIS) as well as precipitation were utilized to monitor the spatiotemporal dynamics of vegetation and climate along with their correlation and coherency across Italy during 2000–2021. The analyses were performed on both pixel and ecoregion levels via the least-squares wavelet software (LSWAVE). It was found that relatively more areas in all ecoregions had positive NDVI gradients than negative for each month since 2000. It was estimated that the average NDVI has increased by 0.07 since 2000 for all ecoregions. Except the southern ecoregion which showed an insignificant daytime cooling, other ecoregions have been warming by less than 0.05 °C/year since 2000. Furthermore, precipitation had an insignificant decreasing trend for almost all ecoregions over the past two decades. The annual coherency between NDVI and LST was found much stronger than the annual coherency between NDVI and precipitation. The annual cycles of NDVI and LST were out-of-phase for the southern ecoregion while the annual cycle of precipitation led the one in NDVI by about one month for this ecoregion, the only ecoregion showing the highest Pearson correlation (53%) and annual coherency (39%) between NDVI and precipitation. For other ecoregions, the annual cycles of NDVI and LST were approximately in-phase, i.e., less than a month phase delay

    Precipitation Time Series Analysis and Forecasting for Italian Regions

    Get PDF
    In Italy, most of the destructive landslides are triggered by rainfall, particularly in central Italy. Therefore, effective monitoring of rainfall is crucial in hazard management and ecosystem assessment. Global precipitation measurement (GPM) is the next-generation satellite mission, which provides the precipitation measurements worldwide. In this research, we employed the available monthly GPM data to estimate the monthly precipitation for the twenty administrative regions of Italy from June 2000 to June 2021. For each region, we applied the non-parametric Mann–Kendall test and its associated Sen’s slope to estimate the precipitation trend for each calendar month. In addition, for each region, we estimated a linear trend and the seasonal cycles of precipitation with the antileakage least-squares spectral analysis (ALLSSA) and showed the annual precipitation variations using box plots. Lastly, we compared machine-learning models based on the auto-regressive moving average for monthly precipitation forecasting and showed that ALLSSA outperformed them. The findings of this research provide a significant insight into processing climate data, both in terms of trend-season estimates and forecasting, and can potentially be used in landslide susceptibility analysis
    • 

    corecore